Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.315
Filtrar
1.
Viruses ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543698

RESUMO

The human genome is estimated to encode more than 500 proteases performing a wide range of important physiological functions. They digest proteins in our food, determine the activity of hormones, induce cell death and regulate blood clotting, for example. During viral infection, however, some proteases can switch sides and activate viral glycoproteins, allowing the entry of virions into new target cells and the spread of infection. To reduce unwanted effects, multiple protease inhibitors regulate the proteolytic processing of self and non-self proteins. This review summarizes our current knowledge of endogenous protease inhibitors, which are known to limit viral replication by interfering with the proteolytic activation of viral glycoproteins. We describe the underlying molecular mechanisms and highlight the diverse strategies by which protease inhibitors reduce virion infectivity. We also provide examples of how viruses evade the restriction imposed by protease inhibitors. Finally, we briefly outline how cellular protease inhibitors can be modified and exploited for therapeutic purposes. In summary, this review aims to summarize our current understanding of cellular protease inhibitors as components of our immune response to a variety of viral pathogens.


Assuntos
Inibidores de Proteases , Vírus , Humanos , Inibidores de Proteases/farmacologia , Glicoproteínas/metabolismo , Proteólise , Vírus/metabolismo , Peptídeo Hidrolases/metabolismo
2.
Sci Rep ; 14(1): 6418, 2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494515

RESUMO

Respiratory viruses can cause life-threatening illnesses. The focus of treatment is on supportive therapies and direct antivirals. However, antivirals may cause resistance by exerting selective pressure. Modulating the host response has emerged as a viable therapeutic approach for treating respiratory infections. Additionally, considering the probable future respiratory virus outbreaks emphasizes the need for broad-spectrum therapies to be prepared for the next pandemics. One of the principal bioactive constituents found in the seed extract of Aesculus hippocastanum L. (AH) is ß-escin. The clinical therapeutic role of ß-escin and AH has been associated with their anti-inflammatory effects. Regarding their mechanism of action, we and others have shown that ß-escin and AH affect NF-κB signaling. Furthermore, we have reported the virucidal and broad-spectrum antiviral properties of ß-escin and AH against enveloped viruses such as RSV, in vitro and in vivo. In this study, we demonstrate that ß-escin and AH have antiviral and virucidal activities against SARS-CoV-2 and CCoV, revealing broad-spectrum antiviral activity against coronaviruses. Likewise, they exhibited NF-κB and cytokine modulating activities in epithelial and macrophage cell lines infected with coronaviruses in vitro. Hence, ß-escin and AH are promising broad-spectrum antiviral, immunomodulatory, and virucidal drugs against coronaviruses and respiratory viruses, including SARS-CoV-2.


Assuntos
Aesculus , COVID-19 , Vírus , Escina/farmacologia , SARS-CoV-2/metabolismo , Aesculus/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Vírus/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Viruses ; 16(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543839

RESUMO

A defining feature of a productive viral infection is the co-opting of host cell resources for viral replication. Despite the host repertoire of molecular functions and biological counter measures, viruses still subvert host defenses to take control of cellular factors such as RNA binding proteins (RBPs). RBPs are involved in virtually all steps of mRNA life, forming ribonucleoprotein complexes (mRNPs) in a highly ordered and regulated process to control RNA fate and stability in the cell. As such, the hallmark of the viral takeover of a cell is the reshaping of RNA fate to modulate host gene expression and evade immune responses by altering RBP interactions. Here, we provide an extensive review of work in this area, particularly on the duality of the formation of RNP complexes that can be either pro- or antiviral. Overall, in this review, we highlight the various ways viruses co-opt RBPs to regulate RNA stability and modulate the outcome of infection by gathering novel insights gained from research studies in this field.


Assuntos
RNA Viral , Vírus , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Vírus/genética , Vírus/metabolismo
4.
Arch Microbiol ; 206(3): 94, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334822

RESUMO

One of the mechanisms viruses use in hijacking host cellular machinery is mimicking Short Linear Motifs (SLiMs) in host proteins to maintain their life cycle inside host cells. In the face of the escalating volume of virus-host protein-protein interactions (vhPPIs) documented in databases; the accurate prediction of molecular mimicry remains a formidable challenge due to the inherent degeneracy of SLiMs. Consequently, there is a pressing need for computational methodologies to predict new instances of viral mimicry. Our present study introduces a DMI-de-novo pipeline, revealing that vhPPIs catalogued in the VirHostNet3.0 database effectively capture domain-motif interactions (DMIs). Notably, both affinity purification coupled mass spectrometry and yeast two-hybrid assays emerged as good approaches for delineating DMIs. Furthermore, we have identified new vhPPIs mediated by SLiMs across different viruses. Importantly, the de-novo prediction strategy facilitated the recognition of several potential mimicry candidates implicated in the subversion of host cellular proteins. The insights gleaned from this research not only enhance our comprehension of the mechanisms by which viruses co-opt host cellular machinery but also pave the way for the development of novel therapeutic interventions.


Assuntos
Proteínas , Vírus , Motivos de Aminoácidos , Proteínas/química , Proteínas/metabolismo , Vírus/genética , Vírus/metabolismo , Interações Hospedeiro-Patógeno
5.
Dev Comp Immunol ; 155: 105152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408717

RESUMO

Tilapia lake virus (TiLV) is an emerging virus that seriously threatens the tilapia industries worldwide. Interferon regulatory factors (IRFs), which are the crucial mediators regulating the response of interferon (IFN) to combat invading viruses, have not yet been reported in tilapia during TiLV infection. Here, six IRF (IRF1, IRF2, IRF4, IRF7, IRF8, and IRF9) homologs from tilapia were characterized and analyzed. These IRFs typically shared the conserved domains and phylogenetic relationship with IRF homologs of other species. Tissue distribution analysis showed that all six IRF genes were expressed in various tissues, with the highest expression in immune-related tissues. Furthermore, overexpression of IRFs in tilapia brain (TiB) cells significantly inhibited TiLV propagation, as evidenced by decreased viral segment 8 gene transcripts and copy numbers of viral segment 1. More importantly, all six IRF genes significantly enhanced the promoter activity of type I interferon-a3 (IFNa3) in TiB cells, suggesting that tilapia IRF genes serve as positive regulators in activating IFNa3. Surprisingly, the promoter activity of IFNa3 mediated by IRF genes was markedly inhibited post-TiLV infection, indicating that TiLV antagonized IRF-mediated IFN immune response. Taken together, six IRF genes of tilapia are highly conserved transcription factors that inhibit TiLV infection by activating the promoter of IFNa3, which is in turn restrained by TiLV. These findings broaden our knowledge about the functionality of IRF-mediated antiviral immunity in tilapia against TiLV infection and host-TiLV interaction, which lays a foundation for developing antiviral strategies in tilapia cultural industries.


Assuntos
Ciclídeos , Doenças dos Peixes , Tilápia , Viroses , Vírus , Animais , Interferons/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Filogenia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Vírus/metabolismo
6.
PLoS Pathog ; 20(1): e1011947, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232128

RESUMO

Microbes associated with an organism can significantly modulate its susceptibility to viral infections, but our understanding of the influence of individual microbes remains limited. The nematode Caenorhabditis elegans is a model organism that in nature inhabits environments rich in bacteria. Here, we examine the impact of 71 naturally associated bacteria on C. elegans susceptibility to its only known natural virus, the Orsay virus. Our findings reveal that viral infection of C. elegans is significantly influenced by monobacterial environments. Compared to an Escherichia coli environmental reference, the majority of tested bacteria reduced C. elegans susceptibility to viral infection. This reduction is not caused by virion degradation or poor animal nutrition by the bacteria. The repression of viral infection by the bacterial strains Chryseobacterium JUb44 and Sphingobacterium BIGb0172 does not require the RIG-I homolog DRH-1, which is known to activate antiviral responses such as RNA interference and transcriptional regulation. Our research highlights the necessity of considering natural biotic environments in viral infection studies and opens the way future research on host-microbe-virus interactions.


Assuntos
Proteínas de Caenorhabditis elegans , Viroses , Vírus , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interferência de RNA , Viroses/genética , Vírus/metabolismo
7.
Antiviral Res ; 221: 105780, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092324

RESUMO

Peroxisomes are ubiquitous organelles found in eukaryotic cells that play a critical role in the oxidative metabolism of lipids and detoxification of reactive oxygen species (ROS). Recently, the role of peroxisomes in viral infections has been extensively studied. Although several studies have reported that peroxisomes exert antiviral activity, evidence indicates that viruses have also evolved diverse strategies to evade peroxisomal antiviral signals. In this review, we summarize the multiple roles of peroxisomes in the interplay between viruses and mammalian cells. Focus is given on the peroxisomal regulation of innate immune response, lipid metabolism, ROS production, and viral regulation of peroxisomal biosynthesis and degradation. Understanding the interactions between peroxisomes and viruses provides novel insights for the development of new antiviral strategies.


Assuntos
Transdução de Sinais , Vírus , Animais , Espécies Reativas de Oxigênio/metabolismo , Peroxissomos/metabolismo , Vírus/metabolismo , Antivirais/metabolismo , Mamíferos/metabolismo
8.
Subcell Biochem ; 106: 37-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159223

RESUMO

The immune system functions to protect the host from pathogens. To counter host defense mechanisms, pathogens have developed unique strategies to evade detection or restrict host immune responses. Programmed cell death is a major contributor to the multiple host responses that help to eliminate infected cells for obligate intracellular pathogens like viruses. Initiation of programmed cell death pathways during the early stages of viral infections is critical for organismal survival as it restricts the virus from replicating and serves to drive antiviral inflammation immune recruitment through the release of damage-associated molecular patterns (DAMPs) from the dying cell. Necroptosis has been implicated as a critical programmed cell death pathway in a diverse set of diseases and pathological conditions including acute viral infections. This cell death pathway occurs when certain host sensors are triggered leading to the downstream induction of mixed-lineage kinase domain-like protein (MLKL). MLKL induction leads to cytoplasmic membrane disruption and subsequent cellular destruction with the release of DAMPs. As the role of this cell death pathway in human disease becomes apparent, methods identifying necroptosis patterns and outcomes will need to be further developed. Here, we discuss advances in our understanding of how viruses counteract necroptosis, methods to quantify the pathway, its effects on viral pathogenesis, and its impact on cellular signaling.


Assuntos
Viroses , Vírus , Humanos , Necroptose , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Apoptose/fisiologia , Vírus/metabolismo
9.
Subcell Biochem ; 106: 113-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159225

RESUMO

As obligate pathogens, viruses have developed diverse mechanisms to deliver their genome across host cell membranes to sites of virus replication. While enveloped viruses utilize viral fusion proteins to accomplish fusion of their envelope with the cellular membrane, non-enveloped viruses rely on machinery that causes local membrane ruptures and creates an opening through which the capsid or viral genome is released. Both membrane fusion and membrane penetration take place at the plasma membrane or in intracellular compartments, often involving the engagement of the cellular machinery and antagonism of host restriction factors. Enveloped and non-enveloped viruses have evolved intricate mechanisms to enable virus uncoating and modulation of membrane fusion in a spatiotemporally controlled manner. This chapter summarizes and discusses the current state of understanding of the mechanisms of viral membrane fusion and penetration. The focus is on the role of lipids, viral scaffold uncoating, viral membrane fusion inhibitors, and host restriction factors as physicochemical modulators. In addition, recent advances in visualizing and detecting viral membrane fusion and penetration using cryo-electron microscopy methods are presented.


Assuntos
Internalização do Vírus , Vírus , Microscopia Crioeletrônica/métodos , Vírus/genética , Vírus/metabolismo , Membrana Celular/metabolismo , Fusão de Membrana
10.
Viruses ; 15(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140552

RESUMO

Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.


Assuntos
Viroses , Vírus , Animais , Proteínas Nucleares/metabolismo , Corpos Enovelados/metabolismo , Núcleo Celular , Vírus/metabolismo , Viroses/metabolismo , Proteína da Leucemia Promielocítica/metabolismo
11.
Viruses ; 15(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38140618

RESUMO

As the world exits the global pandemic caused by the previously unknown SARS-CoV-2, we also mark the 30th anniversary of p53 being named "molecule of the year" by Science based on its role as a tumor suppressor. Although p53 was originally discovered in association with a viral protein, studies on its role in preventing carcinogenesis have far overshadowed research related to p53's role in viral infections. Nonetheless, there is an extensive body of scientific literature demonstrating that p53 is a critical component of host immune responses to viral infections. It is striking that diverse viruses have independently developed an impressive repertoire of varied mechanisms to counter the host defenses that are mediated by and through p53. The variety of ways developed by viruses to disrupt p53 in their hosts attests to the protein's importance in combatting viral pathogens. The present perspective aims to make the case that p53 ought to be considered a virus suppressor in addition to a tumor suppressor. It is hoped that additional research aimed at more fully understanding the role of p53 in antiviral immunity will result in the world being better positioned for the next pandemic than it was when SARS-CoV-2 emerged to produce COVID-19.


Assuntos
COVID-19 , Proteína Supressora de Tumor p53 , Viroses , Vírus , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Imunidade Inata , SARS-CoV-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus/genética , Vírus/metabolismo
12.
Sci Rep ; 13(1): 19934, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968508

RESUMO

Membrane fusion is an essential step for the entry of enveloped viruses, such as human immunodeficiency virus and influenza virus, into the host cell, often triggered by the binding of membrane proteins on the viral envelope to host cell membrane. Recently, external stimuli was shown to trigger membrane fusion in an artificial system. Direct observation of artificial membrane fusion using a giant unilamellar vesicle (GUV), which is similar in size to a cell, is useful as a biological model system. However, there are no model systems for studying membrane fusion of enveloped viruses with host cells. Here, we report a supramolecular model system for viral entry into a GUV or cell through membrane fusion. The system was constructed by complexing a cationic lipid bilayer on an anionic artificial viral capsid, self-assembled from viral ß-annulus peptides. We demonstrate that the cationic enveloped artificial viral capsid electrostatically interacts with the anionic GUV or cell, and the capsid enters the GUV or cell through membrane fusion. The model system established in this study will be important for analyzing membrane fusion during infection of a natural virus.


Assuntos
Fusão de Membrana , Vírus , Humanos , Vírus/metabolismo , Internalização do Vírus , Peptídeos/metabolismo , Proteínas do Capsídeo/metabolismo
13.
Postepy Biochem ; 69(3): 135-145, 2023 09 30.
Artigo em Polonês | MEDLINE | ID: mdl-38019747

RESUMO

Glycosylated proteins play a key role in the various stages of bacterial and viral invasions. Glycosylation is a common process across all domains of life. Initially, this process was attributed only to eukaryotic organisms, in which the synthesis takes place in the rough endoplasmic reticulum and the Golgi apparatus. Over time, it has been shown that many bacteria and viruses express N-glycans and O-glycans on their surface. Prokaryotes are able to synthesize glycans, while virions take over the host's cellular machinery to produce glycans. Pathogens use glycoproteins to regulate adhesion to infected cells (Ebola virus), protect receptor-binding epitopes (HIV) and evade the immune system detection by molecular mimicry (Helicobacter pylori, Haemophilus influenzae). Successful infection also depends on the host surface glycans, mainly in determining the tissue tropism of viruses (Influenza A viruses) and the sliding motility of bacteria (Mycoplasma sp.). Modification of glycan structures, important at various levels of the infectious cycle, creates new therapeutic possibilities that gives a chance to limit the spread of infectious diseases.


Assuntos
Viroses , Vírus , Humanos , Glicosilação , Vírus/metabolismo , Polissacarídeos/metabolismo , Bactérias/metabolismo
14.
PLoS Pathog ; 19(11): e1011719, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939149

RESUMO

Clinical studies report that viral infections promote acute or chronic bacterial infections at multiple host sites. These viral-bacterial co-infections are widely linked to more severe clinical outcomes. In experimental models in vitro and in vivo, virus-induced interferon responses can augment host susceptibility to secondary bacterial infection. Here, we used a cell-based screen to assess 389 interferon-stimulated genes (ISGs) for their ability to induce chronic Pseudomonas aeruginosa infection. We identified and validated five ISGs that were sufficient to promote bacterial infection. Furthermore, we dissected the mechanism of action of hexokinase 2 (HK2), a gene involved in the induction of aerobic glycolysis, commonly known as the Warburg effect. We report that HK2 upregulation mediates the induction of Warburg effect and secretion of L-lactate, which enhances chronic P. aeruginosa infection. These findings elucidate how the antiviral immune response renders the host susceptible to secondary bacterial infection, revealing potential strategies for viral-bacterial co-infection treatment.


Assuntos
Infecções Bacterianas , Coinfecção , Viroses , Vírus , Humanos , Interferons/metabolismo , Vírus/metabolismo
15.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 3948-3965, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877384

RESUMO

Endosomal sorting complex required for transport (ESCRT) system drives various cellular processes, including endosome sorting, organelle biogenesis, vesicle transport, maintenance of plasma membrane integrity, membrane fission during cytokinesis, nuclear membrane reformation after mitosis, closure of autophagic vacuoles, and enveloped virus budding. Increasing evidence suggests that the ESCRT system can be hijacked by different family viruses for their proliferation. At different stages of the virus life cycle, viruses can interfere with or exploit ESCRT-mediated physiological processes in various ways to maximize their chance of infecting the host. In addition, many retroviral and RNA viral proteins possess "late domain" motifs, which can recruit host ESCRT subunit proteins to assist in virus endocytosis, transport, replicate, budding and efflux. Therefore, the "late domain" motifs of viruses and ESCRT subunit proteins could serve as promising drug targets in antiviral therapy. This review focuses on the composition and functions of the ESCRT system, the effects of ESCRT subunits and virus "late domain" motifs on viral replication, and the antiviral effects mediated by the ESCRT system, aiming to provide a reference for the development and utilization of antiviral drugs.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Vírus , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus/metabolismo , Transporte Proteico , Replicação Viral , Endossomos/metabolismo , Liberação de Vírus
16.
J Biomed Sci ; 30(1): 88, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845731

RESUMO

RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.


Assuntos
COVID-19 , Vírus , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , RNA Interferente Pequeno/metabolismo , Pandemias , COVID-19/genética , COVID-19/terapia , Interferência de RNA , Vírus/genética , Vírus/metabolismo , Antivirais/uso terapêutico , RNA Viral
17.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194984, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37717938

RESUMO

A global pandemic COVID-19 resulting from SARS-CoV-2 has affected a significant portion of the human population. Antiviral innate immunity is critical for controlling and eliminating the viral infection. Ubiquitination is extensively involved in antiviral signaling, and recent studies suggest that ubiquitin-like proteins (Ubls) modifications also participate in innate antiviral pathways such as RLR and cGAS-STING pathways. Notably, virus infection harnesses ubiquitination and Ubls modifications to facilitate viral replication and counteract innate antiviral immunity. These observations indicate that ubiquitination and Ubls modifications are critical checkpoints for the tug-of-war between virus and host. This review discusses the current progress regarding the modulation of the SARS-CoV-2 life cycle and antiviral innate immune pathways by ubiquitination and Ubls modifications. This paper emphasizes the arising concept that ubiquitination and Ubls modifications are powerful modulators of virus and host interaction and potential drug targets for treating the infection of SARS-CoV-2.


Assuntos
COVID-19 , Viroses , Vírus , Humanos , Ubiquitina/metabolismo , SARS-CoV-2/metabolismo , Imunidade Inata , Ubiquitinação , Ubiquitinas/metabolismo , Vírus/metabolismo
18.
Nat Microbiol ; 8(11): 2170-2182, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749252

RESUMO

Methanogenic archaea are major producers of methane, a potent greenhouse gas and biofuel, and are widespread in diverse environments, including the animal gut. The ecophysiology of methanogens is likely impacted by viruses, which remain, however, largely uncharacterized. Here we carried out a global investigation of viruses associated with all current diversity of methanogens by assembling an extensive CRISPR database consisting of 156,000 spacers. We report 282 high-quality (pro)viral and 205 virus-like/plasmid sequences assigned to hosts belonging to ten main orders of methanogenic archaea. Viruses of methanogens can be classified into 87 families, underscoring a still largely undiscovered genetic diversity. Viruses infecting gut-associated archaea provide evidence of convergence in adaptation with viruses infecting gut-associated bacteria. These viruses contain a large repertoire of lysin proteins that cleave archaeal pseudomurein and are enriched in glycan-binding domains (Ig-like/Flg_new) and diversity-generating retroelements. The characterization of this vast repertoire of viruses paves the way towards a better understanding of their role in regulating methanogen communities globally, as well as the development of much-needed genetic tools.


Assuntos
Euryarchaeota , Vírus , Humanos , Animais , Archaea/genética , Euryarchaeota/metabolismo , Bactérias/metabolismo , Metano/metabolismo , Vírus/metabolismo
19.
Autophagy ; 19(12): 3246-3247, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37561024

RESUMO

Selective macroautophagy/autophagy is tightly regulated by cargo receptors that recruit specific substrates to the ATG8-family proteins for autophagic degradation. Therefore, identification of selective receptors and their new cargoes will improve our understanding of selective autophagy functions in plant development and stress responses. We have recently demonstrated that the small peptide VISP1 acts as a selective autophagy receptor to mediate degradation of suppressors of RNA silencing (VSRs) of several RNA and DNA viruses. Moreover, VISP1 induces symptom recovery through fine-tuning the balance of plant immunity and virus pathogenicity. Our findings provide new insights into the double-edged sword roles of selective autophagy in plant-virus interactions.


Assuntos
Macroautofagia , Vírus , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Vírus/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/metabolismo
20.
Expert Rev Neurother ; 23(9): 775-790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551672

RESUMO

INTRODUCTION: Clinically, Alzheimer's disease (AD) is a syndrome with a spectrum of various cognitive disorders. There is a complete dissociation between the pathology and the clinical presentation. Therefore, we need a disruptive new approach to be able to prevent and treat AD. AREAS COVERED: In this review, the authors extensively discuss the evidence why the amyloid beta is not the pathological cause of AD which makes therefore the amyloid hypothesis not sustainable anymore. They review the experimental evidence underlying the role of microbes, especially that of viruses, as a trigger/cause for the production of amyloid beta leading to the establishment of a chronic neuroinflammation as the mediator manifesting decades later by AD as a clinical spectrum. In this context, the emergence and consequences of the infection/antimicrobial protection hypothesis are described. The epidemiological and clinical data supporting this hypothesis are also analyzed. EXPERT OPINION: For decades, we have known that viruses are involved in the pathogenesis of AD. This discovery was ignored and discarded for a long time. Now we should accept this fact, which is not a hypothesis anymore, and stimulate the research community to come up with new ideas, new treatments, and new concepts.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Vírus , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...